数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:
小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:
步骤:①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.
②分别过M、N作OM、ON的垂线,交于点P.
③作射线OP.则OP为∠AOB的平分线.
小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线.
根据以上情境,解决下列问题:
(1)李老师用尺规作角平分线时,用到的三角形全等的判定方法是_______.
(2)小聪的作法正确吗?请说明理由.
(3)请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明)
等腰△ABC,AB=AC,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连结EF,△BPE与△PFE是否相似?请说明理由;
某商店准备购进甲、乙两种商品进行销售.若每个甲种商品的进价比每个乙种商品的进价少2元,且用80元购进甲种商品的数量与用100元购进乙种商品的数量相同.
(1)求每个甲种商品、每个乙种商品的进价分别为多少元?
(2)若该商店本次购进甲种商品的数量比购进乙种商品的数量的3倍还少5个,购进两种商品的总数量不超过95个,该商店每个甲种商品的销售价格为12元,每个乙种商品的销售价格为15元,则将本次购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润(利润=售价-进价)超过371元,通过计算求出该商店本次购进甲、乙两种商品有几种方案?请你设计出来.
如图,一次函数y=ax+b的图象与反比例函数y=的图象交于M、N两点.
求:(1)反比例函数与一次函数的解析式;
(2)根据图象写出反比例函数的值>一次函数的值的x的取值范围.
正方形边长为4,
、
分别是
、
上的两个动点,当
点在
上运动时,保持
和
垂直,设MB=x
(1)证明:;
(2)当点运动到什么位置时
,
求此时的值.
烟花广告公司将一块广告牌任务交给师徒两人,已知师傅单独完成时间是徒弟单独完成时间的,现由徒弟先做1天,师徒再合作2天完成。
⑴师徒两人单独完成任务各需要几天?
⑵若完成后得到报酬720元,你若是部门经理,按各人完成的工作量计算报酬,该如何分配?