若函数满足:在定义域内存在实数
,使
(k为常数),则称“f(x)关于k可线性分解”.
(Ⅰ)函数是否关于1可线性分解?请说明理由;
(Ⅱ)已知函数关于
可线性分解,求
的取值范围;
(Ⅲ)证明不等式:.
在△ABC中,三内角A、B、C成等差数列,角B的对边b为1,求证:1<a+c≤2.
集合A={x|x2-5x+4≤0},B={x|x2-2ax+a+2≤0},若BA且B≠
,求a的取值范围.
(本小题满分10分)选修4—5:不等式选讲
(I)已知都是正实数,求证:
;
(II)已知都是正实数,求证:
.
(本小题满分10分)选修4—4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线
的参数方程是
(
为参数),曲线
的极坐标方程为
.
(I)求曲线的直角坐标方程;
(II)设直线与曲线
相交于
,
两点,求M,N两点间的距离
(本小题满分10分)选修4—1:几何证明选讲
如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点(
G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H .求证:
(I)C,D,F,E四点共圆;
(II)GH2=GE·GF.