如图是一个十字路口的示意图,每条停车线到十字路中心O的距离均为20m。一人骑电动助力车以7m/s的速度到达停车线(图中A点)时,发现左前方道路一辆轿车正以8m/s的速度驶来,车头已抵达停车线(图中B),设两车均沿道路中央作直线运动,助力车可视为质点,轿车长4.8m,宽度可不计。
(1)请通过计算判断两车保持上述速度匀速运动,是否会发生相撞事故?
(2)若轿车保持上述速度匀速运动,而助力车立即作匀加速直线运动,为避免发生相撞事故,助力车的加速度至少要多大?
如图所示,一根直棒长度为5m,用手提着其上端,在其下端的正下方10m处有一长度为5m的、内径比直棒大得多的空心竖直管子,放开后让直棒做自由落体运动(不计空气阻力,重力加速度取g=10m∕s2)。求:
(1)直棒下端下落至空心管上端时所用的时间;
(2)直棒通过该空心管所用的时间。
如图所示,在xoy直角坐标系中,第Ⅰ象限内分布着方向垂直纸面向里的匀强磁场,第二象限内分布着方向沿y轴负方向的匀强电场。初速度为零、带电量为q、质量为m的离子经过电压为U的电场加速后,从x上的A点垂直x轴进入磁场区域,经磁场偏转后过y轴上的P点且垂直y轴进入电场区域,在电场偏转并击中x轴上的C点。已知OA=OC=d。不计重力。求;
(1)粒子到达A点的速度;
(2)磁感强度B和电场强度E的大小;
如图所示,在x轴的上方(y>0的空间内)存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带正电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成45°角,若粒子的质量为m,电量为q,求:
(1)该粒子在磁场中作圆周运动的轨道半径;
(2)粒子在磁场中运动的时间;
(3)该粒子射出磁场的位置。
电磁炮是一种理想的兵器,它的主要原理如图所示。1982年澳大利亚制成了能把m= 2.0kg的弹体(包括金属杆EF的质量)加速到10km/s的电磁炮(常规炮弹的速度约为2km/s)。若轨道宽为2m,通过的电流为10A,轨道间所加匀强磁场的磁感强度为B=5×1O4T,B垂直于轨道向上 (轨道摩擦不计)求:
(1)弹体(包括金属杆EF)所受安培力大小;
(2)弹体(包括金属杆EF)从静止加速到10km/s,轨道至少要多长;
(3)弹体(包括金属杆EF)从静止加速到10km/s过程中,安培力
的最大瞬时功率。
图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直纸面向里,磁感应强度大小为B 。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P 点。已知B、v以及P 到O的距离L.不计重力,求:
(1)粒子带哪种电荷;
(2)粒子以初速度v垂直进入磁场,在磁场中做什么运动;
(3)粒子的电荷q与质量m 之比。