如图所示,AB为粗糙程度不变的水平地面,BC为粗糙程度不变的斜面,B点有微小的圆弧与两个面相切过渡。一物体(可看作质点)从A点以某一速度出发做匀减速运动并冲上斜面BC直到速度为零,以出发点为计时起点,各时间点的速度如下表所述。试求物体在斜面上运动的最远距离。
t(s) |
0 |
1 |
2 |
3 |
4 |
5 |
V(m/s) |
15 |
13 |
11 |
8 |
4 |
0 |
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
如图所示平面直角坐标系xoy位于竖直平面内,在坐标系的整个空间存在竖直向上的匀强电场,在区域Ⅰ(0≤x≤L)还存在匀强磁场,磁场方向垂直于xoy平面向里。在x轴上方有一光滑弧形轨道PQ,PQ两点间竖直高度差为。弧形轨道PQ末端水平,端口为Q (3L,
);某时刻一质量为m、带电荷量为+q的小球b从y轴上的M点进入区域I,其速度方向沿x轴正方向;小球b在I区内做匀速圆周运动。b进入磁场的同时,另一个质量也为m、带电荷量为 q的小球a从P点由静止释放。两小球刚好在x=2L上的N点(没具体画出)反向等速率相碰。重力加速度为g。
求:(l)电场强度E;
(2)a球到达N点时的速度v;
(3)M点的坐标。
如图所示,平行板电容器上板M带正电,两板间电压恒为U,极板长为(1+)d,板间距离为2d,在两板间有一圆形匀强磁场区域,磁场边界与两板及右侧边缘线相切,P点是磁场边界与下板N的切点,磁场方向垂直于纸面向里,现有一带电微粒从板的左侧进入磁场,若微粒从两板的正中间以大小为v0水平速度进入板间电场,恰做匀速直线运动,经圆形磁场偏转后打在P点。
(1)判断微粒的带电性质并求其电荷量与质量的比值;
(2)求匀强磁场的磁感应强度B的大小;
(3)若带电微粒从M板左侧边缘沿正对磁场圆心的方向射入板间电场,要使微粒不与两板相碰并从极板左侧射出,求微粒入射速度的大小范围。
如图所示,坐标系xOy在竖直平面内,水平轨道AB和斜面BC均光滑且绝缘,AB和BC的长度均为L,斜面BC与水平地面间的夹角θ=600ׁ,有一质量为m、电量为+q的带电小球(可看成质点)被放在A点。已知在第一象限分布着互相垂直的匀强电场和匀强磁场,电场方向竖直向上,场强大小,磁场为水平方向(图中垂直纸面向外),磁感应强度大小为B;在第二象限分布着沿x轴正向的水平匀强电场,场强大小
。现将放在A点的带电小球由静止释放,则小球需经多少时间才能落到地面(小球所带的电量不变)?
如图所示,两水平放置的平行金属板a、b,板长L=0.2 m,板间距d=0.2 m.两金属板间加可调控的电压U,且保证a板带负电,b板带正电, 忽略电场的边缘效应.在金属板右侧有一磁场区域,其左右总宽度s=0.4 m,上下范围足够大,磁场边界MN和PQ均与金属板垂直,磁场区域被等宽地划分为n(正整数)个竖直区间,磁感应强度大小均为B=5×10 3T,方向从左向右为垂直纸面向外、向内、向外.在极板左端有一粒子源,不断地向右沿着与两板等距的水平线OO′发射比荷=1×108 C/kg、初速度为v0=2×105 m/s的带正电粒子。忽略粒子重力以及它们之间的相互作用.
(1)当取U何值时,带电粒子射出电场时的速度偏向角最大;
(2)若n=1,即只有一个磁场区间,其方向垂直纸面向外,则当电压由0连续增大到U过程中带电粒子射出磁场时与边界PQ相交的区域的宽度;
(3)若n趋向无穷大,则偏离电场的带电粒子在磁场中运动的时间t为多少?