如图所示,AB为倾角θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙。BP为圆心角等于143°,半径R=1m的竖直光滑圆弧形轨道,两轨道相切于B点,P、0两点在同一竖直线上,轻弹簧一端固定在A点,另一自由端在斜面上C点处,现有一质量m = 2kg的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点后,从C点运动到B点过程中的位移与时间的关系为(式中x单位是m , t单位是s),假设物块笫一次经过B点后恰能到达P点,(sin 37°=0.6,cos 37°=0.8),g取1Om/s2。
试求:(1) 若CD=1m,试求物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2) B、C两点间的距离x
(3) 若在P处安装一个竖直弹性挡板,小物块与挡板碰撞时间极短且无机械能损失,小物块与弹簧相互作用不损失机械能,试通过计算判断物块在第一次与挡板碰撞后的运动过程中是否会脱离轨道?
如图甲所示,质量m=6.0×10-3 kg、边长L=0.20 m、电阻R=1.0 Ω的正方形单匝金属线框abcd,置于倾角α=30°的绝缘斜面上,ab边沿水平方向,线框的上半部分处在垂直斜面向上的匀强磁场中,磁感应强度B随时间t按图乙所示的规律周期性变化,若线框在斜面上始终保持静止,取g=10 m/s2.试求:
(1)在0~2.0 ×10-2 s时间内线框中产生的感应电流的大小;
(2)在t =1.0×10-2 s时线框受到斜面的摩擦力;
在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q,质量为m的微粒从原点出发沿与x轴正方向的夹角为45°的初速度进入复合场中,正好做直线运动,当微粒运动到A(2L,2L)时,电场方向突然变为竖直向上(不计电场变化的时间),粒子继续运动一段时间后,正好垂直于y轴穿出复合场.(不计一切阻力)求:
(1)电场强度E大小;
(2)磁感应强度B的大小
如图所示,匀强磁场竖直向上穿过水平放置的金属框架,框架宽为L,右端接有电阻R,磁感应强度为B,一根质量为m、电阻不计的金属棒以v0的初速度沿框架向左运动,棒与框架的动摩擦因数为μ,测得棒在整个运动过程中,通过任一截面的电量为q求:
(1)棒能运动的距离;
(2)R上产生的热量.
质量是1kg的小球用长为0.5m的细线悬挂在O点,O点距地面的高度为1m,如果使小球绕过轴在水平面内做圆周运动,若细线受到的拉力为12.5N就会被拉断。求:
(1)当小球的周期为多大时线将断裂。
(2)小球的落地点与悬点的水平距离。
某个质量为m的物体在从静止开始下落的过程中,除了重力之外还受到水平方向的大小、方向都不变的力F=的作用。
(1)这个物体在沿什么样的轨迹运动?求它在时刻t的速度大小。
(2)建立适当的坐标系,写出这个坐标系中代表物体运动轨迹的x、y之间的关系式。