游客
题文

如图所示,光滑固定轨道的两端都是半径为R的四分之一圆弧,在轨道水平面上有两个质量均为m的小球B、C,B、C用一长度锁定不变的轻小弹簧栓接,弹性势能.一质量也为m的小球A从左侧的最高点自由滑下,A滑到水平面与B碰后立即粘在一起结合成D就不再分离(碰撞时间极短).当D、C一起刚要滑到右侧最低点时,弹簧锁定解除且立即将C弹出并与弹簧分离.求

(1)弹簧锁定解除前瞬间,D、C速度大小
(2)弹簧锁定解除后,C第一次滑上轨道右侧圆弧部分的轨迹所对的圆心角
(3)弹簧锁定解除后,若C、D(含弹簧)每次碰撞均在水平面;求第N次碰撞结束时,C、D的速度

科目 物理   题型 计算题   难度 较难
知识点: 电荷守恒定律
登录免费查看答案和解析
相关试题

一辆小汽车匀变速通过长1100米的隧道,小汽车刚进隧道时的速度是10m/s,出隧道时的速度是12m/s,(小汽车可看成质点)求:
(1)小汽车过隧道时的加速度是多大?
(2)通过隧道的平均速度是多少?

如图所示,是一电梯由底楼上升到顶楼过程中速度随时间的变化图象,

(1)各段时间内电梯的加速度各是多大?
(2)电梯由底楼上升到顶楼的过程中的总位移多大?

如图所示,一质量m=0.1kg、电量q=1.0×10-5 C的带正电小球(可视作点电荷),它在一高度和水平位置都可以调节的平台上滑行一段距离后平抛,并沿圆弧轨道下滑。A、B为圆弧两端点,其连线水平,已知圆弧半径R=1.0m,平台距AB连线的高度h可以在0.2m-0.8m.之间调节。有一平行半径OA方向的匀强电场E,只存在圆弧区域内。为保证小球从不同高度h平抛,都恰能无碰撞地沿圆弧切线从A点进入光滑竖直圆弧轨道,小球平抛初速度v0和h满足如图所示的抛物线,其中两点的坐标为(0.2,1.5),(0.8,3.0)。同时调节平台离开A点的距离合适。不计空气阻力,取g=10m/s2,求:


(1)小球在空中飞行的最短时间t;
(2)平台离开A的水平距离x范围;
(3)当h=0.2m且E=2.5×104N/C时,小球滑到最低点C点的速度v;
(4)为了保证小球在圆轨道内滑动到C点的速度都是(3)中的v,则电场力F=qE的大小应与平台高度h满足的关系。(通过列式运算说明)

如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,高平行轨道足够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2

(1)求导体棒ab从A下落r/2时的加速度大小。
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和ab进入磁场II时R2上的电功率P2
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间变化的关系式。

节能混合动力车是一种可以利用汽油及所储存电能作为动力来源的汽车。有一质量m=1000kg的混合动力轿车,在平直公路上以匀速行驶,发动机的输出功率为。当驾驶员看到前方有80km/h的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L=72m后,速度变为。此过程中发动机功率的用于轿车的牵引,用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能。假设轿车在上述运动过程中所受阻力保持不变。求
1)轿车以在平直公路上匀速行驶时,所受阻力的大小;
2)轿车从减速到过程中,获得的电能
3)轿车仅用其在上述减速过程中获得的电能维持匀速运动的距离

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号