解分式方程:
在平面内,先将一个多边形以点为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为
,并且原多边形上的任一点
,它的对应点
在线段
或其延长线上;接着将所得多边形以点
为旋转中心,逆时针旋转一个角度
,这种经过和旋转的图形变换叫做旋转相似变换,记为
,其中点
叫做旋转相似中心,
叫做相似比,
叫做旋转角.
(1)填空:
①如图1,将以点
为旋转相似中心,放大为原来的2倍,再逆时针旋转
,得到
,这个旋转相似变换记为
(,);
②如图2,是边长为
的等边三角形,将它作旋转相似变换
,得到
,则线段
的长为
;
(2)如图3,分别以锐角三角形的三边
,
,
为边向外作正方形
,
,
,点
,
,
分别是这三个正方形的对角线交点,试分别利用
与
,
与
之间的关系,运用旋转相似变换的知识说明线段
与
之间的关系.
在梯形中,
,
,
,点
分别在线段
上(点
与点
不重合),且
,设
,
.
(1)求与
的函数表达式;
(2)当为何值时,
有最大值,最大值是多少?
某农场去年种植了10亩地的南瓜,亩产量为2000,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60 000kg,求南瓜亩产量的增长率.
如图,是半径为
的
上的定点,动点
从
出发,以
的速度沿圆周逆时针运动,当点
回到
地立即停止运动.
(1)如果,求点
运动的时间;
(2)如果点是
延长线上的一点,
,那么当点
运动的时间为
时,判断直线
与
的位置关系,并说明理由.
某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20时,按2元/
计费;月用水量超过20
时,其中的20
仍按2元/
收费,超过部分按
元/
计费.设每户家庭用用水量为
时,应交水费
元.
(1)分别求出和
时
与
的函数表达式;
(2)小明家第二季度交纳水费的情况如下:
月份 |
四月份 |
五月份 |
六月份 |
交费金额 |
30元 |
34元 |
42.6元 |
小明家这个季度共用水多少立方米?