已知数列中,
前
和
(1)求证:数列是等差数列
(2)求数列的通项公式
(3)设数列的前
项和为
,是否存在实数
,使得
对一切正整数
都成立?若存在,求
的最小值,若不存在,试说明理由。
已知数列是首项为
且公比q不等于1的等比数列,
是其前n项的和,
成等差数列.证明:
成等比数列.
已知等差数列中,
,前10项的和
(1)求数列的通项公式;
(2)若从数列中,依次取出第2、4、8,…,
,…项,按原来的顺序排成一个新的数列
,试求新数列
的前
项和
.
已知圆O:交x轴于A,B两点,曲线C是以AB为长轴,离心率为
的椭圆,其左焦点为F.若P是圆O上一点,连结PF,过原点P作直线PF的垂线交直线
于点Q.
(1)求椭圆C的标准方程;
(2)若点P的坐标为(1,1),求证:直线PQ圆O相切;
(3)试探究:当点P在圆O上运动时(不与A、B重合),直线PQ与圆O是否保持相切的位置关系?若是,请证明;若不是,请说明理由.
已知△BCD中,∠BCD=,BC=CD=1,AB⊥平面BCD,∠ADB=
,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD ?
某商家有一种商品,成本费为a 元,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%,如果月末售出可获利120元,但要付保管费5元,试就 a的取值说明这种商品是月初售出好,还是月末售出好?