如图,等腰梯形ABCD放置在平面直角坐标系中,已知A(-2,0)、B(6,0)、A(0,3),反比例函数的图象经过点C.
(1)求C点坐标和反比例函数的解析式;
(2)将等腰梯形ABCD向上平移个单位后,使点B恰好落在双曲线上,求
的值.
如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DC=12。
(1)求AB的长。
(2)判断△ABC的形状,并说明理由。
先化简,再求值: ,选一个你喜欢的数字代入求值。
解分式方程:
计算:(1)
如图,在平面直角坐标系中,直线y=x+1分别与两坐标轴交于B,A两点,C为该直线上的一动点,以每秒1个单位长度的速度从点A开始沿直线BA向上移动,作等边△CDE,点D和点E都在x轴上,以点C为顶点的抛物线y=a(x﹣m)2+n经过点E.⊙M与x轴、直线AB都相切,其半径为3(1﹣
)a.
(1)求点A的坐标和∠ABO的度数;
(2)当点C与点A重合时,求a的值;
(3)点C移动多少秒时,等边△CDE的边CE第一次与⊙M相切?