如图所示,直角坐标系xoy位于竖直平面内,在‑m≤x≤0的区域内有磁感应强度大小B = 4.0×10-4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E = 4N/C、方向沿y轴正方向的条形匀强电场,其宽度d = 2m。一质量m = 6.4×10-27kg、电荷量q =‑-3.2×10‑19C的带电粒子从P点以速度v = 4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力。求:
⑴带电粒子在磁场中运动时间;
⑵当电场左边界与y轴重合时Q点的横坐标;
⑶若只改变上述电场强度的大小,要求带电粒子仍能通过Q点,讨论此电场左边界的横坐标x′与电场强度的大小E′的函数关系。
如图所示,电压U=6V,定值电阻R1=2.4kΩ、R2=4.8kΩ.(1) 若在ab之间接一个C=100μF的电容器,闭合开关S,电路稳定后,求电容器上所带的电量;(2):若在ab之间接一个内阻RV = 4.8kΩ的电压表,求电压表的示数.
如图所示,长为L的平行金属板M、N水平放置,两板之间的距离为d,两板间有水平方向的匀强磁场,磁感应强度为B,一个带正电的质点,沿水平方向从两板的正中央垂直于磁场方向进入两板之间,重力加速度为g。
(1)若M板接直流电源正极,N板接负极,电源电压恒为U,带电质点以恒定的速度v匀速通过两板之间的复合场(电场、磁场和重力场),求带电质点的电量与质量的比值。
(2)若M、N接如图所示的交变电流(M板电势高时U为正),L=0.5m,d=0.4m,B=0.1T,质量为m=1×10 4kg带电量为q=2×10 2C的带正电质点以水平速度v=1m/s,从t=0时刻开始进入复合场(g=10m/s2)
a.定性画出质点的运动轨迹
b.求质点在复合场中的运动时间
如图所示,MN、PQ为竖直放置的两根足够长平行光滑导轨,相距为d=0.5m,M、P之间连一个R=1.5Ω的电阻,导轨间有一根质量为m=0.2kg,电阻为r=0.5Ω的导体棒EF,导体棒EF可以沿着导轨自由滑动,滑动过程中始终保持水平且跟两根导轨接触良好。整个装置的下半部分处于水平方向且与导轨平面垂直的匀强磁场中,磁感应强度为B=2T。取重力加速度g=10m/s2,导轨电阻不计。
(1)若导体棒EF从磁场上方某处沿导轨下滑,进入匀强磁场时速度为v=2m/s,
a.求此时通过电阻R的电流大小和方向
b.求此时导体棒EF的加速度大小
(2)若导体棒EF从磁场上方某处由静止沿导轨自由下滑,进入匀强磁场后恰好做匀速直线运动,求导体棒EF开始下滑时离磁场的距离。
(1)从宏观现象中总结出来的经典物理学规律不一定都能适用于微观体系。但是在某些问题中利用经典物理学规律也能得到与实际比较相符合的结论。
例如,玻尔建立的氢原子模型,仍然把电子的运动看做经典力学描述下的轨道运动。他认为,氢原子中的电子在库仑力的作用下,绕原子核做匀速圆周运动。已知电子质量为m,电荷为e,静电力常量为k,氢原子处于基态时电子的轨道半径为r1。
(1)氢原予处于基态时,电子绕原子核运动,可等效为环形电流,求此等效电流值。
(2)在微观领域,动量守恒定律和能量守恒定律依然适用。
a.己知光在真空中的速度为c,氢原子在不同能级之间跃迁时,跃迁前后可认为质量不变,均为m。设氢原子处于基态时的能量为E1(E1<O),当原子处于第一激发态时的能量为E1/4,求原子从第一激发态跃迁到基态时,放出光子的能量和氢原子的反冲速度。
b.在轻核聚变的核反应中,两个氘核()以相同的动能Eo=0.35MeV做对心碰撞,假设该反应中释放的核能全部转化为氦核(
)和中子(
)的动能。已知氘核的质量mD=2.0141u,中子的质量mn=1.0087u,氦核的质量MHe=3.0160u,其中1u相当于931MeV。在上述轻核聚变的核反应中生成的氦核和中子的动能各是多少MeV(结果保留1位有效数字)?
(10分)汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子经加速电压加速后,穿过A’中心的小孔沿中心线(O1O的方向进入到两块水平正对放置的平行极板P和P’间的区域,极板间距为d。当P和P’极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;当P和P’极板间加上偏转电压U后,亮点偏离到O’点;此时,在P和P’间的区域,再加上一个方向垂直于纸面向里的匀强磁场,调节磁场的强弱,当磁感应强度的大小为B时,亮点重新回到O点。不计电子的初速度、所受重力和电子间的相互作用。
(1)求电子经加速电场加速后的速度大小;
(2)若不知道加速电压值,但己知P和P’极板水平方向的长度为L1,它们的右端到荧光屏中心O点的水平距离为L2,(O于O’点的竖直距离为h,(O'与0点水平距离可忽略不计),求电子的比荷。