如图所示,绝缘传送带与水平地面成37°角,倾角也是37°的绝缘光滑斜面固定于水平地面上且与传送带良好对接,轻质绝缘弹簧下端固定在斜面底端。皮带传动装置两轮轴心相L="6" m,B、C分别是传送带与两轮的切点,轮缘与传送带之间不打滑。现将质量m=0.1kg、电荷量q="+2×" 10-5 C的工件(视为质点,电荷量保持不变)放在弹簧上,用力将弹簧压缩至A点后由静止释放,工件滑到传送带端点B时速度v0= 8m/s,AB间的距离s=1m,AB间无电场,工件与传送带间的动摩擦因数μ=0.25。(g取10m/s2。sin37°=0.6,cos37°=0.8)
(1)求弹簧的最大弹性势能;
(2)若皮带传动装置以速度v顺时针匀速转动,且v可取不同的值(安全运行的最大速度为10 m/s),在工件经过B点时,先加场强大小E=4×104 N/C,方向垂直于传送带向上的均强电场,0.5s后场强大小变为E'="1.2" ×105 N/C,方向变为垂直于传送带向下。工件要以最短时间到达C点,求v的取值范围;
(3)若用Q表示工件由B至C的过程中和传送带之间因摩擦而产生的热量,在满足(2)问的条件下,请推出Q与v的函数关系式。
电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场由加了电压的相距为d的两块水平平行放置的导体板形成,如图甲所示.大量电子(其重力不计)由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0,当在两板间加如图乙所示的周期为2t0、幅值恒为U0的电压时,所有电子均从两板间通过,然后进入水平宽度为l,竖直宽度足够大的匀强磁场中,最后通过匀强磁场打在竖直放置的荧光屏上.问:
(1)电子在刚穿出两板之间时的最大侧向位移与最小侧向位移之比为多少?
(2)要使侧向位移最大的电子能垂直打在荧光屏上,匀强磁场的磁感应强度为多少?
(3)在满足第(2)问的情况下,打在荧光屏上的电子束的宽度为多少?(已知电子的质量为m、电荷量为e)
如图所示,电阻忽略不计的、两根两平行的光滑金属导轨竖直放置,其上端接一阻值为3Ω的定值电阻R。在水平虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B,磁场区域的高度为d=0.5m。导体棒a的质量ma=0.2kg、电阻Ra=3Ω;导体棒b的质量mb=0.1kg、电阻Rb=6Ω,它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,都能匀速穿过磁场区域,且当b刚穿出磁场时a正好进入磁场.设重力加速度为g=10m/s2,不计a、b棒之间的相互作用。导体棒始终与导轨垂直且与导轨接触良好。求:
(1)在整个过程中,a、b两棒分别克服安培力所做的功;
(2)M点和N点距L1的高度。
“绿色奥运”是2008年北京奥运会的三大理念之一,奥组委决定在各比赛场馆使用新型节能环保电动车,届时江汉大学的500名学生将担任司机,负责接送比赛选手和运输器材。在检测某款电动车性能的某次实验中,质量为8×102 kg的电动车由静止开始沿平直公路行驶,达到的最大速度为15m/s。利用传感器测得此过程中不同时刻电动车的牵引力F与对应的速度v,并描绘出F—图象(图中AB、BO均为直线))。假设电动车行驶中所受的阻力恒定。
(1)根据图象定性描述汽车的运动过程;
(2)求电动车的额定功率;
(3)电动车由静止开始运动,经过多长时间,速度达到2m/s?
如图所示,在方向水平向右、大小为E=6×103N/C的匀强电场中有一个光滑的绝缘平面. 一根绝缘细绳两端分别系有带电滑块甲和乙,甲的质量为m1=2×10-4 kg,带电量为q1=2×10-9C,乙的质量为m2=1×10-4 kg,带电量为q2=-1×10-9C. 开始时细绳处于拉直状态.由静止释放两滑块,t=3 s时细绳突然断裂,不计滑块间的库仑力,试求∶
(1)细绳断裂前,两滑块的加速度;
(2)在整个运动过程中,乙的电势能增量的最大值;
(3)当乙的电势能增量为零时,甲与乙组成的系统机械能的增量。
)如图所示,在竖直方向上A、B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上;B、C两物体通过细绳绕过轻质定滑轮相连,C放在固定的光滑斜面上。用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行。已知A、B的质量均为m,C的质量为4m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态。释放C后它沿斜面下滑,A刚离开地面时,B获得最大速度。求:
(1)斜面倾角α
(2)B的最大速度vBm