如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点)。已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).
(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?S最大值是多少?
已知关于x的一元二次方程有两个相等的实数根,求
的值.
在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,
连接AC,CF. 求证:(1)AF=CF;
(2)CA平
分∠DCF.
如图,在平面直角坐标系xOy中,一条直线l与x轴相交于点A,
与y轴相交于点,与正比例函数 y=mx(m≠0)的图象
相交于点.
(1)求直线l的解析式;
(2)求△AOP的面积.
解不等式组 并判断
是否为该不等式组的解.
如图,已知关于
的一元二次函数
(
)的图象与
轴相交于
、
两点(点
在点
的左侧),与
轴交于点
,且
,顶点为
.
⑴ 求出一元二次函数的关系式;
⑵
点
为线段
上的一个动点,过点
作
轴的垂线
,垂足为
.若
,
的面积为
,求
关于
的函数关系式,并写出
的取值范围;
⑶ 探索线段
上是否存在点
,使得
为直角三角形,如果存在,求出
的坐标;如果不存在,请说明理由.