鄞州区有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类 野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式;
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出
与x之间的函数关系式;
(3)李经理将这批野生菌存放多少天后出售可获得最大利润元?
(利润=销售总额-收购成本-各种费用)
一架竹梯长13m,如图(AB位置)斜靠在一面墙上,梯子底端离墙5m,
(1)求这个梯子顶端距地面有多高。
(2)如果梯子的顶端下滑4 m(CD位置),那么梯子的底部在水平方向也滑动了4 m吗?为什么?
已知:,求x的值。
计算:
四边形中,
∥
,
,
,
.点
为射线
上动点(不与点
、
重合),点
在直线
上,且
.记
,
,
,
.
(1)当点在线段
上时,写出并证明
与
的数量关系;
(2)随着点的运动,(1)中得到的关于
与
的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的
的取值范围;
(3)若cos=
,试用
的代数式表示
.
已知直线与
轴交于点
,与
轴交于点
,将三角形
绕点
顺时针旋转90°,使点
落在点
,点
落在点
,抛物线
过点
、
、
,其对称轴与直线
交于点
.
(1)求抛物线的表达式;
(2)求的正切值;
(3)点在
轴上,且△
与△
相似,求点
的坐标.