某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
(1)在这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是 ;
(2)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?
如图,已知四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.
解不等式组并写出它的所有整数解.
计算:;
如图,矩形中,
厘米,
厘米(
).动点
同时从
点出发,分别沿
,
运动,速度是
厘米/秒.过
作直线垂直于
,分别交
,
于
.当点
到达终点
时,点
也随之停止运动.设运动时间为
秒.
(1)若厘米,
秒,则
______厘米;
(2)若厘米,求时间
,使
,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形与梯形
的面积相等,求
的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形,梯形
,梯形
的面积都相等?若存在,求
的值;若不存在,请说明理由.
连接上海市区到浦东国际机场的磁悬浮轨道全长约为,列车走完全程包含启动加速、匀速运行、制动减速三个阶段.已知磁悬浮列车从启动加速到稳定匀速动行共需
秒,在这段时间内记录下下列数据:
(1)请你在一次函数、二次函数和反比例函数中选择合适的函数来分别表示在加速阶段()速度
与时间
的函数关系、路程
与时间
的函数关系.
(2)最新研究表明,此种列车的稳定动行速度可达180米/秒,为了检测稳定运行时各项指标,在列车达到这一速度后至少要运行100秒,才能收集全相关数据.若在加速过程中路程、速度随时间的变化关系仍然满足(1)中的函数关系式,并且制作减速所需路程与启动加速的路程相同.根据以上要求,至少还要再建多长轨道就能满足试验检测要求?
(3)若减速过程与加速过程完全相反.根据对问题(2)的研究,直接写出列车在试验检测过程中从启动到停车这段时间内,列车离开起点的距离(米)与时间
(秒)的函数关系式(不需要写出过程)