已知:如图,直线与x轴相交于点A,与直线
相交于点P.动点E从原点O出发,以每秒1个单位长度的速度沿着OPA的路线向点A匀速运动(E不与点O,A重合),过点E分别作EF⊥x轴于F,EB⊥y轴于B.设运动t秒时,矩形EBOF与△OPA重叠部分面积为S.
(1)求点P的坐标;
(2)请判断△OPA的形状并说明理由;
(3)请探究S与t之间的函数关系式,并指出t的取值范围.
如图,曲线是函数
在第一象限内的图象,抛物线是函数
的图象.点
(
)在曲线
上,且
都是整数.
(1)求出所有的点;
(2)在中任取两点作直线,求所有不同直线的条数;
(3)从(2)的所有直线中任取一条直线,求所取直线与抛物线有公共点的概率.
某校为了解决学生停车难的问题,打算新建一个自行车车棚,图1是车棚的示意图(尺寸如图所示),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图2是车棚顶部的截面示意图,弧所在圆的圆心为
,半径
为3米.
(1)求的度数;
(2)学校准备用某种材料制作车棚顶部,请你算一算,需该种材料多少平方米?(不考虑接缝等因素,结果精确到1平方米).
(第2小题的参考数据:取3.14)
如图,已知抛物线与
轴交于点
.
(1)平移该抛物线使其经过点和点
(2,0),求平移后的抛物线解析式;
(2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.
已知,一次函数的图象与反比例函数
的图象都经过点
.
(1)求的值及反比例函数的表达式;
(2)判断点是否在该反比例函数的图象上,请说明理由.
已知抛物线.
(1)通过配方,将抛物线的表达式写成的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.