定理:三角形的一个外角等于与它不相邻的两个内角的和.
已知:如图, 是 的外角.求证: .
证法1:如图, (三角形内角和定理), 又 (平角定义), (等量代换). (等式性质). |
证法2:如图, , , 且 (量角器测量所得) 又 (计算所得) (等量代换). |
下列说法正确的是
A. |
证法1还需证明其他形状的三角形,该定理的证明才完整 |
B. |
证法1用严谨的推理证明了该定理 |
C. |
证法2用特殊到一般法证明了该定理 |
D. |
证法2只要测量够一百个三角形进行验证,就能证明该定理 |
如图,直线 , 相交于点 . 为这两直线外一点,且 .若点 关于直线 , 的对称点分别是点 , ,则 , 之间的距离可能是
A. |
0 |
B. |
5 |
C. |
6 |
D. |
7 |
如图,将数轴上 与6两点间的线段六等分,这五个等分点所对应数依次为 , , , , ,则下列正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 为正六边形 对角线 上一点, , ,则 的值是
A. |
20 |
B. |
30 |
C. |
40 |
D. |
随点 位置而变化 |
若 取1.442,计算 的结果是
A. |
|
B. |
|
C. |
144.2 |
D. |
|