如图,在平行四边形ABCD中,AE∥CF,求证:△ABE≌△CDF.
如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.
如图□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,求DB′的长.
已知二次函数的图象是由函数
的图象向左平移一个单位得到.反比例函数
与二次函数
的图象交于点A(1,n).
(1)求a,p,q,m,n的值;
(2)要使反比例函数和二次函数在直线
的一侧都是y随着x的增大而减小,求t的最大值;
(3)记二次函数图象的顶点为B,以AB为边构造矩形ABCD,边CD与函数
相交,且直线AB与CD的距离为
,求出点D,C的坐标.
如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=,PD=.
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.