如图所示,已知四边形ABCD是正方形,EA⊥平面ABCD,PD∥EA,AD=PD=2EA=2,F,G,H分别为BP,BE,PC的中点。
(Ⅰ)求证:平面FGH⊥平面AEB;
(Ⅱ)在线段PC上是否存在一点M,使PB⊥平面EFM?若存在,求出线段PM的长;若不存在,请说明理由.
(本题满分12分)
已知数列的前 n项和为
,满足
,且
.
(Ⅰ)求,
;
(Ⅱ)若,求证:数列
是等比数列。
(Ⅲ)若, 求数列
的前n项和
。
(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。
(本题满分12分)
为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;
(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;
(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。
(本题满分10分)
在△ABC中,角A、B、C的对边分别为、b 、c,且满足
。
(Ⅰ)求角B的值;
(Ⅱ)设,当
取到最大值时,求角A、角C的值。
(本小题满分13分)
已知椭圆的离心率
,且短半轴
为其左右焦点,
是椭圆上动点.
(Ⅰ)求椭圆方程;
(Ⅱ)当时,求
面积;
(Ⅲ)求取值范围.