已知椭圆(
)的右焦点为
,离心率为
.
(Ⅰ)若,求椭圆的方程;
(Ⅱ)设直线与椭圆相交于
,
两点,
分别为线段
的中点. 若坐标原点
在以
为直径的圆上,且
,求
的取值范围.
如图所示,已知D为△ABC的BC边上一点,⊙O1经过点B、D交AB于另一点E,⊙O2经过点C、D交AC于另一点F,⊙O1与⊙O2交于点G.
(1)求证:∠EAG=∠EFG;
(2)若⊙O2的半径为5,圆心O2到直线AC的距离为3,AC=10,AG切⊙O2于G,求线段AG的长.
如图所示,⊙O内切△ABC的边于D、E、F,AB=AC,连接AD交⊙O于点H,直线HF交BC的延长线于点G.求证:
(1)圆心O在直线AD上;
(2)点C是线段GD的中点.
有一块直角三角形木板,如图所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根据需要,要把它加工成一个面积最大的正方形木板,设计一个方案,应怎样裁才能使正方形木板面积最大,并求出这个正方形木板的边长.
如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH∶HC的值.
如图,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=
AB,点F在BC上,且CF=
BC.求证:
(1)EF⊥BC;
(2)∠ADE=∠EBC.