操作与探究
我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。
(1)分别测量下面各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.
(2) 如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合下面的两个图说明其中的道理.(提示:考虑)
由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.
甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.
(1)求甲第一个出场的概率;
(2)求甲比乙先出场的概率.
某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:
(1)该调查小组抽取的样本容量是多少?
(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;
(3)请估计该市中小学生一天中阳光体育运动的平均时间.
解方程和不等式组:
(1);
(2).
先化简,再求值:,其中
.
如图,在平面直角坐标系中,抛物线与
轴交于
两点,与
轴交于点
,且点
的坐标为
点
在这条抛物线上,且不与
两点重合,过点
作
轴的垂线与射线
交于点
,以
为边作
使
点
在点
的下方,且
设线段
的长度为
,点
的横坐标为
.
(1)求这条抛物线所对应的函数表达式;
(2)求与
之间的函数关系式;
(3)当的边
被
轴平分时,求
的值;
(4)以为边作等腰直角三角形
,当
时,直接写出点
落在
的边上时
的值.