游客
题文

李经理在某地以10元/千克的批发价收购了2 000千克核桃,并借一仓库储存.在存放过程中,平均每天有6千克的核桃损耗掉,而且仓库允许存放时间最多为60天.若核桃的市场价格在批发价的基础上每天每千克上涨0.5元。
(1)存放x天后,将这批核桃一次性出售,如果这批核桃的销售总金额为y元,试求出y与x之间的函数关系式;
(2)如果仓库存放这批核桃每天需要支出各种费用合计340元,李经理要想获得利润22 500元,需将这批核桃存放多少天后出售?(利润=销售总金额-收购成本-各种费用)

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(满分l0分)如图,△ABC是等边三角形,点D是AC的中点,延长BC到点E,使CE=CD.

(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,保留作图痕迹);
(2)求证:BM=EM.

(每小题8分,共16分)
(1)计算:︱-2︱+2sin30°-(-)2+(tan45°)-1
(2)先化简,再求值:,其中a=tan60°-l.

(每小题7分,共14分)
(1)解方程:x2—6x+1=0;
(2)解方程:=

(满分l6分)如图5—9,已知点O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0)。
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A,B,O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O,B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由。

(满分l4分)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为点H.
(1)求证:AH·AB=AC2
(2)若过点A的直线与弦CD(不含端点)相交于点E,与⊙O相交于点F,求证:AE·AF=AC2
(3)若过点A的直线与直线CD相交于点P,与⊙O相交于点Q,判断AP·AQ=AC2是否成立(不必证明).

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号