为了预防流感,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图),现测药物8分钟燃毕,此时空气中每立方米含药量为6毫克,请根据题中所提供的信息,回答下列问题
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范围是 ;药物燃烧完后,y与x的函数关系式为
(2)研究表明,当空气中的每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室.
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效地杀灭空气中的病菌,那么此次消毒是否有效?为什么?
在直角坐标系中,有以 为顶点的正方形,设它在折线 上侧部分的面积为 ,求 关于 的函数关系式.
编号为 到 的 个弹珠被分别放在两个篮子 和 中, 号弹珠在篮子 中,把这个弹珠从篮子 移至篮子 中,这时篮子 中的弹珠号码数的平均数等于原平均数加 篮中弹珠号码数的平均数也等于原平均数加 ,问原来在篮子 中有多少个弹珠?
我国是水资源比较贫乏的国家之一,各地采用了价格调控等手段来达到节约用水的目的.某市用水收费的方法是:水费 基本费十超额费十定额损耗费.若每月用水量不超过最低限量 时,只付基本费 元和每月的定额损耗费 元;若用水量超过 时,除了付同上的基本费和定额损耗费外,超过部分每立方米付 元的超额费.已知每户每月的定额损耗费不超过 元.
(1)当月用水量为 时,支付费用为 元,写出 关于 的函数关系式;
(2)该市一家庭今年一季度的用水量和支付费用见下表,根据表中数据求 .
如图,在四边形 中, .点 从点 出发,以 的速度向 点运动;点 从点 同时出发,以 的速度向点 运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为 .
(1) 为何值时,四边形 是矩形?
(2) 为何值时,四边形 是平行四边形?
(3)在其它条件不变的情况下,能否通过改变点 的运动速度,使得四边形 是菱形?
设 为自然数,如果 成立,求 的值.