记者在街上随机抽取10人,在一个月内接到的垃圾短信条数统计的茎叶图如下:
(Ⅰ)计算样本的平均数及方差;
(Ⅱ)现从10人中随机抽出2名,设选出者每月接到的垃圾短信在10条以下的人数为,求随机变量
的分布列和期望.
设函数x.
(1)求f(x)的单调增区间;
(2)若x∈(0,4),求y=f(x)的值域.
已知f(x)=|2x﹣1|﹣|x+1|.
(Ⅰ)求f(x)>x解集;
(Ⅱ)若a+b=1,对∀a,b∈(0,+∞),+
≥|2x﹣1|﹣|x+1|恒成立,求x的取值范围.
已知在直角坐标系xOy中,直线l的参数方程为,(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ+3=0.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.
如图,AB是的⊙O直径,CB与⊙O相切于B,E为线段CB上一点,连接AC、AE分别交⊙O于D、G两点,连接DG交CB于点F.
(Ⅰ)求证:C、D、G、E四点共圆.
(Ⅱ)若F为EB的三等分点且靠近E,EG=1,GA=3,求线段CE的长.
已知f(x)=.
(1)求f(x)的单调区间;
(2)令g(x)=ax2﹣2lnx,则g(x)=1时有两个不同的根,求a的取值范围;
(3)存在x1,x2∈(1,+∞)且x1≠x2,使|f(x1)﹣f(x2)|≥k|lnx1﹣lnx2|成立,求k的取值范围.