游客
题文

如图,已知抛物线与坐标轴交于三点,点的横坐标为,过点的直线轴交于点,点是线段上的一个动点,于点.若,且

(1)求的值
(2)求出点的坐标(其中用含的式子表示):
(3)依点的变化,是否存在的值,使为等腰三角形?

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

求值:x²(x-1)-x(x²+x-1),其中x=

分解因式(y2+3y)-(2y+6)2.

分解因式4a2bc-3a2c2+8abc-6ac2

分解因式(m2+3m2-8(m2+3m)-20;

(本小题满分12分)已知:抛物线的对称轴为轴交于两点,与轴交于点其中

(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段上的一个动点(不与点O、点C重合).过点D轴于点连接.设的长为的面积为.求之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号