在坐标平面内,半径为R的⊙C与x轴交于点D(1,0)、E(5,0),与y轴的正半轴相切于点A。点A、B关于x轴对称,点P(a,0)在x的正半轴上运动,作直线BP,作EH⊥BP于H。
⑴求圆心C的坐标及半径R的值;
⑵△POB和△PHE随点P的运动而变化,若它们全等,求a的值;
⑶当a=6时,试确定直线BP与⊙C的位置关系并说明理由。
如图,点A是半圆上的三等分点,B是的中点,P是直径MN上一动点.⊙O的半径为1,问P在直线MN上什么位置时,AP+BP的值最小?并求出AP+BP的最小值.
在半径为5cm的⊙O中,弦AB的长等于6cm,若弦AB的两个端点A、B在⊙O上滑动(滑动过程中AB的长度不变),请说明弦AB的中点C在滑运过程中所经过的路线是什么图形.
半径为5cm的⊙O中,两条平行弦的长度分别为6cm和8cm.则这两条弦的距离为多少?
如图,AB是⊙O的直径,P是AB上一点,C、D分别是圆上的点,且∠CPB=∠DPB,,试比较线段PC、PD的大小关系.
已知:如图,在⊙O中,弦AB的长是半径OA的倍,C为
的中点,AB、OC 相交于点M.试判断四边形OACB的形状,并说明理由.