如图所示,电源电动势为E,内阻为r.电路中的R2、R3分别为总阻值一定的滑动变阻器,R0为定值电阻,R1为光敏电阻(其电阻随光照强度增大而减小).当开关S闭合时,电容器中一带电微粒恰好处于静止状态.有关下列说法中正确的是
A.只逐渐增大R1的光照强度,电阻R0消耗的电功率变大,电阻R3中有向上的电流 |
B.只调节电阻R3的滑动端P2向上端移动时,电源消耗的功率变大,电阻R3中有向上的电流 |
C.只调节电阻R2的滑动端P1向下端移动时,电压表示数变大,带电微粒向下运动 |
D.若断开开关S,电容器所带电荷量变大,带电微粒向上运动 |
如图9所示的电路中,电源电动势为E,内阻r不能忽略.R1和R2是两个定值电阻,L是一个自感系数较大的线圈.开关S原来是断开的.从闭合开关S到电路中电流达到稳定为止的时间内,通过R1的电流I1和通过R2的电流I2的变化情况是( )
A.I1开始较大而后逐渐变小 |
B.I1开始很小而后逐渐变大 |
C.I2开始很小而后逐渐变大 |
D.I2开始较大而后逐渐变小 |
如图7所示,在PQ、QR区域中存在着磁感应强度大小相等、方向相反的匀强磁场,磁场方向均垂直于纸面.一导线框abcdefa位于纸面内,框的邻边都相互垂直,bc边与磁场的边界P重合.导线框与磁场区域的尺寸如图所示.从t=0时刻开始,线框匀速横穿两个磁场区域.以a→b→c→d→e→f为线框中的电动势E的正方向,则如图13所示的四个E-t关系示意图中正确的是( )
如图6所示,闭合导线框的质量可以忽略不计,将它从如图所示位置匀速向右拉出匀强磁场.若第一次用0.3 s拉出,外力所做的功为W1,通过导线横截面的电荷量为q1;第二次用0.9 s拉出,外力所做的功为W2,通过导线横截面的电荷量为q2,则( )
A.W1<W2,q1<q2 | B.W1<W2,q1=q2 |
C.W1>W2,q1=q2 | D.W1>W2,q1>q2 |
如图5所示,水平光滑的平行金属导轨,左端接有电阻R,匀强磁场B竖直向下分布在导轨所在的空间内,质量一定的金属棒PQ垂直导轨放置.今使棒以一定的初速度v0向右运动,当其通过位置a、b时,速率分别为va、vb,到位置c时棒刚好静止,设导轨与棒的电阻均不计,a到b与b到c的间距相等,则金属棒在由a到b和由b到c的两个过程中 ( )
A.回路中产生的内能相等 |
B.棒运动的加速度相等 |
C.安培力做功相等 |
D.通过棒横截面积的电荷量相等 |
两块水平放置的金属板间的距离为d,用导线与一个n匝线圈相连,线圈电阻为r,线圈中有竖直方向的磁场,电阻R与金属板连接,如图4所示,两板间有一个质量为m、电荷量+q的油滴恰好处于静止,则线圈中的磁感应强度B的变化情况和磁通量的变化率分别是
( )
A.磁感应强度B竖直向上且正增强,![]() ![]() |
B.磁感应强度B竖直向下且正增强,![]() ![]() |
C.磁感应强度B竖直向上且正减弱,![]() ![]() |
D.磁感应强度B竖直向下且正减弱,![]() ![]() |