设α和β为两个不重合的平面,给出下列四个命题:
①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).
设e1,e2为单位向量,且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.
在直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则|+3
|的最小值为______.
设e1,e2为单位向量,且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为________.
已知正方形ABCD的边长为2,E为CD的中点,则·
=________.
已知椭圆:
的短轴长为2,离心率为
,设过右焦点的直线
与椭圆
交于不同的两点A,B,过A,B作直线
的垂线AP,BQ,垂足分别为P,Q.记
, 若直线l的斜率
≥
,则
的取值范围为.