国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:
类 别 |
电视机 |
洗衣机 |
进价(元/台) |
1800 |
1500 |
售价(元/台) |
2000 |
1600 |
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其他费用)
(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)
如图,AB是⊙O 的直径,CD是⊙O的一条弦,且CD⊥AB于点E.
(1)求证:∠BCO=∠D;
(2)若CD=,AE=2,求⊙O的半径.
.已知关于x的方程mx2+(3m+1)x+3=0(m≠0).
(1)求证:方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值;
如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为(-1,0)
(1)求 B、C、D三点的坐标;
(2)抛物线经过B、C、D三点,求它的解析式;
(1)解方程:
(2)解方程:x(x-3)+x-3=0
如图,在等边三角形ABC中,AB=6,AD⊥BC于点D,点P在边AB上运动,过点P作PE∥BC与边AC交于点E,连接ED,以PE,ED为邻边作▱PEDF,设▱PEDF与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x<6).
(1)求线段PE的长(用含x的代数式表示);
(2)当四边形PEDF为菱形时,求x的值;
(3)求y与x之间的函数关系式.