如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).
(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD="x,BE=y," 请你写出与
之间的函数关系式及其定义域.
(2)请你进一步研究如下问题:
问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?
问题②:在△DEF的移动过程中,是否存在某个位置,使得?如果存在,求出AD的长度;如果不存在,请说明理由.
问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?
已知:如图,点坐标为
,
点坐标为
.
(1)求过两点的直线解析式;
(2)过点作直线
与
轴交于点
,且使
,求
的面积.
(1)解不等式:;
(2)解方程组
七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:
.(请按照图⑴中卡片的形状来画图,并像图⑵那样标上每张卡片的代号).
材料:用平方差公式计算:
解:原式=
=
=
=
=
你能否看出材料中的规律?试着计算:(2+1) (22+1) (24 +1) ……(28+1)
在如图边长为7.6的正方形的角上挖掉一个边长为2.6的小正方形,剩余的图形能否拼成一个矩形?若能,画出这个矩形,并求出这个矩形的面积是多少.