已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).(1)求an并证明数列{bn-1}是等比数列;(2)若数列{cn}满足cn=,证明:c1+c2+c3+…+cn<3.
已知函数的图象如图所示. (1)求函数的解析式; (2)设,且方程有两个不同的实数根,求实数的取值范围和这两个根的和; (3)在锐角中,若,求的取值范围.
化简 (Ⅰ) (Ⅱ)
若函数 (Ⅰ)求函数的单调递增区间; (Ⅱ)当时,求函数的值域.
将函数的图象向右平移个单位, 再将所得图象上各点横坐标伸长到原来的3倍(纵坐标不变), 再将所得图象上各点纵坐标伸长为原来的4倍(横坐标不变), 得到函数的图象; (Ⅰ)写出函数的解析式; (Ⅱ)求此函数的对称中心的坐标; (Ⅲ)用五点作图法作出这个函数在一个周期内的图象.
已知<<<, (Ⅰ)求的值. (Ⅱ)求.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号