已知函数f(x)是定义在R上的偶函数,且x≥0时,.
(1)求f(-1)的值;
(2)求函数f(x)的值域A;
(3)设函数的定义域为集合B,若AÍB,求实数a的取值范围.
选修4-4:极坐标与参数方程(本小题满分7分)
在直角坐标系中,以原点
为极点,以
轴正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
,曲线
的参数方程为
.
(1)求曲线的直角坐标方程与曲线
的普通方程;
(2)试判断曲线与
是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.
选修4-2:矩阵与变换(本小题满分7分)已知二阶矩阵有特征值λ1=4及属于特征值4的一个特征向量
并有特征值
及属于特征值-1的一个特征向量
,
(Ⅰ)求矩阵;(Ⅱ )求
.
(本小题满分14分)已知函数,其中a为实数.
(1)求g(x)的极值;
(2)设a<0,若对任意的,
恒成立,求a的最小值.
(本小题满分13分)如图,分别过椭圆:
左右焦点
、
的动直线
相交于
点,与椭圆
分别交于
不同四点, 直线
的斜率
、
、
、
满足
.已知当
轴重合时,
,
.
(1)求椭圆的方程;
(2)是否存在定点,使得
为定值.若存在,求出
点坐标并求出此定值,若不存在,说明理由.
(本小题满分13分)某工厂生产A,B两种型号的玩具,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种玩具各100件进行检测,检测结果统计如下:
测试指标 |
[70,76) |
[76,82) |
[82,88) |
[88,94) |
[94,100) |
玩具A |
8 |
12 |
40 |
32 |
8 |
玩具B |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计玩具A、玩具B为正品的概率;
(Ⅱ)生产一件玩具A,若是正品可盈利40元,若是次品则亏损5元;生产一件玩具B,若是正品可盈利50元,若是次品则亏损10元.在(I)的前提下,
(i)记X为生产1件玩具A和1件玩具B所得的总利润,求随机变量X的分布列和数学期望;
(ii)求生产5件玩具B所获得的利润不少于140元的概率.