如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为
,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.
(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.
(本小题满分13分)
某军事院校招生要经过考试和体检两个过程,在考试通过后才有体检的机会,两项都合格则被录取.若甲、乙、丙三名考生能通过考试的概率分别为0.4,0.5,0.8,体检合格的概率分别为0.5,0.4,0.25,每名考生是否被录取相互之间没有影响.
(1)求恰有一人通过考试的概率;
(2)设被录取的人数为求
的分布列和数学期望.
(本小题满分13分)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)设,求
的值域和单调递增区间.
本小题满分12分)
如图点为双曲线
的左焦点,左准线
交
轴于点
,点P是
上的一点
,且线段PF的中点
在双曲线
的左支上.
(1)求双曲线的标准方程;
(2)若过点的直线
与双曲线
的左右两支分别交于
、
两点,设
,当
时,求直线
的斜率
的取值范围.
(本小题满分12分)
正项数列满足:,
,点
在圆
上,
(1)求证:;
(2)若,求证:数列
是等比数列;
(3)求和: