设椭圆M:=1(a>
)的右焦点为F1,直线l:x=
与x轴交于点A,若
=2
(其中O为坐标原点).
(1)求椭圆M的方程;
(2)设P是椭圆M上的任意一点,EF为圆N:x2+(y-2)2=1的任意一条直径(E,F为直径的两个端点),求·
的最大值.
(本小题满分12分)
设椭圆的离心率,
右焦点到直线
的距离
为坐标原点.
(Ⅰ)求椭圆的方程;
(II)过点作两条互相垂直的射线,与椭圆
分别交于
两点,证明:点
到直线
的距离为定值,并求弦
长度的最小值.
(本小题满分12分)
已知等腰直角三角形,其中∠
=90º,
.点
、
分别是
、
的中点,现将△
沿着边
折起到△
位置,使
⊥
,连结
、
.
(Ⅰ)求证:⊥
;
(Ⅱ)求二面角的余弦值.
(本小题满分12分)
某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示.
(Ⅰ)求甲、乙两名运动员得分的中位数;
(Ⅱ)你认为哪位运动员的成绩更稳定?
(Ⅲ)如果从甲、乙两位运动员的7场得分中各随机抽取一场的得分,求甲的得分大于乙的得分的概率.
(本小题满分12分)
已知函数的最小正周期为
.
(Ⅰ)求
;
(Ⅱ)当时,求函数
的值域.
函数的定义域为(0,1](
为实数).
⑴当时,求函数
的值域;
⑵若函数在定义域上是减函数,求
的取值范围;
⑶求函数在x∈(0,1]上的最大值及最小值,并求出函数取最值时
的值.