已知函数f(x)=+a,g(x)=aln x-x(a≠0).
(1)求函数f(x)的单调区间;
(2)求证:当a>0时,对于任意x1,x2∈,总有g(x1)<f(x2)成立.
设函数
(Ⅰ)若在
时有极值,求实数
的值和
的单调区间;
(Ⅱ)若在定义域上是增函数,求实数
的取值范围.
已知函数(
为常数).
(1)求函数的最小正周期和单调增区间;
(2)若函数的图像向左平移
个单位后,得到函数
的图像关于
轴对称,求实数
的最小值.
甲乙丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意。最终,商定以抛硬币的方式决定结果。规则是:由丙抛掷硬币若干次,若正面朝上则甲得一分乙得零分,反面朝上则乙得一分甲得零分,先得4分者获胜,三人均执行胜者的提议.记所需抛币次数为.
⑴求=6的概率;
⑵求的分布列和期望.
已知函数(
).
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若对任意,不等式
恒成立,求实数
的取值范围.
已知椭圆:
的离心率为
,左焦点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与曲线
交于不同的
、
两点,且线段
的中点
在圆
上,求
的值.