已知{an}是各项均为正数的等比数列,且a1+a2=2(+),a3+a4+a5=64(++),(1)求{an}的通项公式.(2)设bn=(an+)2,求数列{bn}的前n项和Tn.
设平面上的向量满足关系,,且,. (Ⅰ)当时,求与的夹角的余弦值. (Ⅱ)当为何值时,.
若函数 (Ⅰ)当为何值时,函数取得最大值. (Ⅱ)求函数的单调递增区间. (Ⅲ)求函数对称中心.
如图,已知直线与轴、轴分别交于,抛物线经过点,点是抛物线与轴的另一个交点。 (1)求抛物线的解析式; (2)若点P在直线BC上,且,求P点坐标。
函数, 用定义证明在上单调递减; 若,求的取值范围。
已知,且 (1)求的值; (2)证明的奇偶性;
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号