袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.
某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进行第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品的合格率依次为,
,
.经过第二次烧制后,甲、乙、丙三件产品的合格率均为
.
(Ⅰ)求第一次烧制后恰有一件产品合格的概率;
(Ⅱ)求经过前后两次烧制后三件产品均合格的概率.
设二次函数,对任意实数
,有
恒成立;数列
满足
.
(1)求函数的解析式和值域;
(2)试写出一个区间,使得当
时,数列
在这个区间上是递增数列,并说明理由;
(3)已知,是否存在非零整数
,使得对任意
,都有
恒成立,若存在,
求之;若不存在,说明理由.
设虚数满足
为实常数,
,
为实数).
(1)求的值;
(2)当,求所有虚数
的实部和;
(3)设虚数对应的向量为
(
为坐标原点),
,如
,求
的取值范围.
已知圆.
(1)设点是圆C上一点,求
的取值范围;
(2)如图,为圆C上一动点,点P在AM上,点N在CM上,且满足
求
的轨迹的内接矩形的最大面积.
已知向量,
,
.
(1)若,求向量
、
的夹角
;
(2)若,函数
的最大值为
,求实数
的值.