如图(a)所示,水平放置的平行金属板AB间的距离d=0.1m,板长L=0.3m,在金属板的左端竖直放置一带有小孔的挡板,小孔恰好位于AB板的正中间,距金属板右端x=0.5m处竖直放置一足够大的荧光屏,现在AB板间加如图(b)所示的方波形电压,已知U0=1.0×102V,在挡板的左侧,有大量带正电的相同粒子以平行于金属板方向的速度持续射向挡板,粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-2C,速度大小均为v0=1.0×104m/s,带电粒子的重力不计,则:
(1)求电子在电场中的运动时间;
(2)求在t=0时刻进入的粒子打在荧光屏上的位置到O点的距离;
(3)请证明粒子离开电场时的速度均相同;
(4)若撤去挡板,求荧光屏上出现的光带长度。
如图所示的平面直角坐标系中,在y>0的区域存在匀强电场,场强沿y轴负方向,在y<0的区域存在匀强磁场,磁场方向垂直于坐标平面向外。一电荷量为q、质量为m的带正电粒子,经过y轴上y=h处的点Pl时速率为vo,方向沿x轴正方向;然后经过x轴上x=2h处的P2点进入磁场。不计粒子重力。
(1)求电场强度的大小;
(2)若粒子进人磁场后,接着经过了y轴上y=-2h处的P3点,求磁感应强度的大小;
(3)若只改变磁场的大小(仍为匀强磁场),让粒子仍从Pl经P2沿原路径进入磁场后,为了使粒子能再次通过P2点,求磁感应强度的大小满足的条件。
如图甲所示,MN、PQ是相距d="l" m的足够长平行光滑金属导轨,导轨平面与水平面成某一夹角,导轨电阻不计;长也为1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,ab的质量m=0.1 kg、电阻R="l" Ω; MN、PQ的上端连接右侧电路,电路中R2为一电阻箱;已知灯泡电阻RL="3" Ω,定值电阻R1="7" Ω,调节电阻箱使R2 ="6" Ω,量力加速度g="10" m/s2。现断开开关S,在t=0时刻由静止释放ab,在t=0.5 s时刻闭合S,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab的速度随时间变化图像。
(1)求斜面倾角a及磁感应强度B的大小;
(2)ab由静止下滑x=50 m(此前已达到最大速度)的过程中,求整个电路产生的电热;
(3)若只改变电阻箱R2的值。当R2为何值时,ab匀速下滑中R2消耗的功率最大?消耗的最大功率为多少?
为了最大限度地减少道路交通事故,全省各地开始了“集中整治酒后驾驶违法行为”专项行动。这是因为一般驾驶员酒后的反应时间(从发现情况到开始制动所需的时间)比正常时慢了0.1~0.5 s,易发生交通事故。
(1)甲为《驾驶员守则》中驾驶员的部分正常反应距离(汽车在反应时间内通过的距离)表格。请选取表格数据计算驾驶员的正常反应时间;
(2)如图乙所示,假设一饮酒后的驾驶员驾车以72 km/h的速度在平直公路上行驶,在距离某学校门前32 m处发现有一队学生在斑马线上横过马路,他的反应时间比正常时慢了0.2 s,刹车后,车做加速度大小为9.5 m/s2的匀减速直线运动。试通过计算说明是否会发生交通事故。
如图所示,水平放置的圆盘半径为 R =" 1" m,在其边缘C 点固定一个高度不计的小桶,在圆盘直径 CD 的正上方放置一条水平滑道AB,滑道与CD平行.滑道右端 B 与圆盘圆心 O 在同一竖直线上,其高度差为 h =" 1.25" m.在滑道左端静止放置质量为 m =" 0.4" kg的物块(可视为质点),物块与滑道间的动摩擦因数为 μ = 0.2.当用一大小为 F =" 4" N的水平向右拉力拉动物块的同时,圆盘从图示位置以角速度ω = 2π rad/s,绕穿过圆心 O 的竖直轴匀速转动.拉力作用一段时间后撤掉,物块在滑道上继续滑行,由B 点水平抛出,恰好落入小桶内.重力加速度取10m/s2.
(1)求拉力作用的最短时间;
(2)若拉力作用时间为0.5s,求所需滑道的长度
如图所示装置由AB、BC、CD三段轨道组成,轨道交接处均由很小的圆弧平滑连接,其中轨道AB、CD段是光滑的,水平轨道BC的长度s=5m,轨道CD足够长且倾角θ=37°,A、D两点离轨道BC的高度分别为4.30m、
1.35m。现让质量为m的小滑块自A点由静止释放。已知小滑块与轨道BC间的动摩擦因数μ=0.5,重力加速度g取10m/s2,sin37°=0.6、cos37°=0.8。求:
(1)小滑块第一次到达D点时的速度大小;
(2)小滑块第一次与第二次通过C点的时间间隔;
(3)小滑块最终停止的位置距B点的距离。