(13分)有一个小圆环瓷片最高能从h=0.18m高处静止释放后直接撞击地面而不被摔坏。现让该小圆环瓷片恰好套在一圆柱体上端且可沿圆柱体下滑,瓷片与圆柱体之间的摩擦力是瓷片重力的4.5倍,如图所示。若将该装置从距地面H=4.5m高处从静止开始下落,瓷片落地恰好没摔坏。已知圆柱体与瓷片所受的空气阻力都为自身重力的0.1倍,圆柱体碰地后速度立即变为零且保持竖直方向。(g=10m/s2)
⑴瓷片直接撞击地面而不被摔坏时,瓷片着地时的最大速度为多少?
⑵瓷片随圆柱体从静止到落地,下落总时间为多少?
如图所示为某学校一套校内备用供电系统,由一台内阻为1Ω的发电机向全校22个教室(每个教室有“220V,40W"的白炽灯6盏)供电.如果输电线的总电阻R是4Ω,升压变压器和降压变压器(都认为是理想变压器)的匝数比分别是1:4和4:1,那么:
(1)发电机的输出功率应是多大?
(2)发电机的电动势是多大?
(3)输电效率是多少?
如图所示,金属框架与水平面成30°角,匀强磁场的磁感强度B=0.4T,方向垂直框架平面向上,金属棒长,重量为0.1N,可以在框架上无摩擦地滑动,棒与框架的总电阻为
,运动时可认为不变,问:
(1)要棒以的速度沿斜面向上滑行,应在棒上加多大沿框架平面方向与导轨平行的外力?
(2)当棒运动到某位置时,外力突然消失,棒将如何运动?
(3)棒匀速运动时的速度多大?
(4)达最大速度时,电路的电功率多大?重力的功率多大?
如图甲所示,质量为2kg的物体在离斜面底端4 m处由静止滑下,若动摩擦因数均为0.5,斜面倾角37°,斜面与平面间由一小段圆弧连接,求物体能在水平面上滑行多远?摩擦力做的总功是多少?(cos370=0.8 sin370=0.6 g=10m/s2)
(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M太.
(2) 一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?
已知某行星的质量为M,质量为m的卫星围绕该行星的半径为R,求该卫星的角速度、线速度、周期和向心加速度各是多少?