如图甲所示,质量m=2 kg的物体在水平面上向右做直线运动。过a点时给物体作用一个水平向左的恒力F并开始计时,选水平向右为速度的正方向,通过速度传感器测出物体的瞬时速度,所得v-t图象如图乙所示。取重力加速度g=10 m/s2。求:
(1)力F的大小和物体与水平面间的动摩擦因数μ; (2)10s末物体离a点的距离。
甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s。甲车上有质量为的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时
①两车的速度各为多少。
②甲总共抛出了多少个小球。
如图所示,在平静的水面下有一点光源S正在以速度V匀速上浮,开始时点光源到水面的距离为H,水对该光源发出的单色光的折射率为n。请解答下列问题:
①在水面上方可以看到一圆形的透光面,求经时间t后该圆的半径(光源未出水面)。
②若该单色光在真空中的波长为,该光在水中的波长为多少?
如图所示,宽度为d的区域上下分别存在垂直纸面、方向相反、磁感应强度大小均为B的匀强磁场。现有一质量为m、电量为+q的粒子,在纸面内以速度V从此区域下边缘上的A点射入,其方向与下边缘成30°角,试求
(1)粒子从进入上边磁场到第一次穿出上边磁场所需的时间。
(2)V满足什么条件粒子能回到A点。
如下图所示,静止放在长直水平桌面上的纸带。其上有一小铁块,它与纸带右端的距离为0.5m,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1。现用力F水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为x=0.8 m。已知g="10" m/s2,桌面高度为H="0.8" m,不计铁块大小,铁块不滚动。求:
(1)铁块落地时的速度大小。
(2)纸带从铁块下抽出所用的时间及开始时铁块距左侧桌边的距离。
如图甲所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1=15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图乙所示.g取10m/s2,不计空气阻力,求:
(1)小球刚进入磁场B1时的加速度大小a;
(2)绝缘管的长度L;
(3)小球离开管后再次经过水平面MN时距管口的距离Δx.