如图,两根足够长平行光滑的金属导轨相距为l,导轨与水平面夹角为θ,并处于磁感应强度为B2、方向垂直导轨平面向下的匀强磁场中。两金属导轨的上端与阻值为R的灯泡连接,并连接水平放置、长和宽都为d的平行金属板,板内存在垂直纸面向里的磁感应强度为B1的匀强磁场。长为l的金属棒ab垂直于金属导轨,且始终与导轨接触良好。当金属棒固定不动时,质量为m、电荷量为q的粒子流沿中线射入金属板内,恰好在金属板的左下边沿穿出。粒子重力不计,重力加速度为g,导轨和金属棒的电阻不计。
(1) 粒子流带何种电荷,速度多大?
(2) 现将金属棒由静止释放,待棒沿导轨匀速下滑后,粒子流水平通过,求金属棒质量M。
有两个完全相同的带电绝缘金属小球A、B,分别带有电荷量QA=6.4×10-9C,QB=-3.2×10-9C,让两绝缘金属小球接触,在接触过程中,电子如何转移并转移了多少?
现代理论认为,反质子的质量与质子相同,约为电子质量的1836倍.若me=0.91×10-30kg,e=1.6×10-19C,求反质子的比荷.
如图所示,电动机带动滚轮作逆时针匀速转动,在滚轮的摩擦力作用下,将一金属板从斜面底端A送往上部,已知斜面光滑且足够长,倾角θ=30°.滚轮与金属板的切点B到斜面底端A的距离为L=6.5m,当金属板的下端运动到切点B处时,立即提起滚轮使它与板脱离接触.已知板之后返回斜面底部与挡板相撞后立即静止,此时放下滚轮再次压紧板,再次将板从最底端送往斜面上部,如此往复.已知板的质量为m=1×103Kg,滚轮边缘线速度恒为v=4m/s,滚轮对板的正压力FN=2×104N,滚轮与板间的动摩擦因数为μ=0.35,取g=10m/s2.
求:(1)在滚轮作用下板上升的加速度;
(2)板加速至与滚轮速度相同时前进的距离;
(3)每个周期中滚轮对金属板所做的功;
(4)板往复运动的周期.
如图6所示,质量为m的小球,用不可伸长的线悬于固定点O,线长为l,初始线与铅垂线有一个夹角,初速为0. 在小球开始运动后,线碰到铁钉O1. 铁钉的方向与小球运动的平面垂直. OO1=h<l,且已知OO1与铅垂线夹角为β. 假设碰后小球恰能做圆周运动. 求线与铁钉碰前瞬时与碰后瞬时张力的变化.
用同种材料制成倾角30°的斜面和长水平面,斜面长2.4m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0="2" m/s时,经过0.8s后小物块停在斜面上多次改变v0的大小,记录下小物块从开始运动到最终停下的时间t,作出t-v0图象,如图所示,求:
1)小物块与该种材料间的动摩擦因数为多少?
2)某同学认为,若小物块初速度为4m/s,则根据图象中t与v0成正比推导,可知小物块运动时间为1.6s。以上说法是否正确?若不正确,说明理由并解出你认为正确的结果。