某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:
课题 |
测量教学楼高度 |
|
方案 |
一 |
二 |
图示 |
![]() |
![]() |
测得数据 |
CD=6.9m,∠ACG=22°,∠BCG=13°, |
EF=10m,∠AEB=32°,∠AFB=43° |
参考数据 |
sin22°≈0.37,cos22°≈0.93, tan22°≈0.40 sin13°≈0.22,cos13°≈0.97 tan13°≈0.23 |
sin32°≈0.53,cos32°≈0.85,tan32°≈0.62 sin43°≈0.68,cos43°≈0.73,tan43°≈0.93 |
请你选择其中的一种方法,求教学楼的高度(结果保留整数)
先化简,再求值:,其中
.
计算:;
已知:如图,在⊿ABC中,∠C=90°,∠B=30°,AC=6,点D在边BC上,AD平分∠CAB,E为AC上的一个动点(不与A、C重合),EF⊥AB,垂足为F.
(1)求证:AD=DB;
(2)设CE=x,BF=y,求y关于x的函数解析式;
(3)当∠DEF=90°时,求BF的长.
如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数的图像过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.
(1)求反比例函数和直线OE的函数解析式;
(2)求四边形OAFC的面积.
已知:如图,在⊿ABC中,∠C=90°,∠B=30°,AB的垂直平分线交AB于E,交BC于点D.
(1)求证:DE=DC.
(2)若DE=2,求⊿ABC三边的长.