在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为,设顶点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求的取值范围.
已知函数,
.
(1)当时,证明:
;
(2)若,求k的取值范围.
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求的面积.
为了了解高一年级学生的身高情况,某校按10%的比例对全校800名高一年级学生按性别进行抽样检查,得到如下频数分布表:
表1:男生身高频数分布表
身高(cm) |
[160,165) |
[165,170) |
[170,175) |
[175,180) |
[180,185) |
[185,190] |
频数 |
2 |
5 |
14 |
13 |
4 |
2 |
表2:男生身高频数分布表
身高(cm) |
[150,155) |
[150,160) |
[160,165) |
[165,170) |
[170,175) |
[175,180] |
频数 |
2 |
12 |
16 |
6 |
3 |
1 |
(1)分别估计高一年级男生和女生的平均身高;
(2)在样本中,从身高180cm以上的男生中任选2人,求至少有一人身高在185cm以上的概率.
在斜三棱柱中,平面
平面ABC,
,
,
.
(1)求证:;
(2)若,求三棱锥
的体积.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,
,
.
(1)当时,求
的大小;
(2)求的面积S的最小值及使得S取最小值时
的值.