如图所示,已知三棱柱ABCA1B1C1,
(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;
(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.
已知函数.
(1)当时,求函数
在
上的值域;
(2)设,若存在
,使得以
为三边长的三角形不存在,求实数
的取值范围.
己知集合,
,
,若“
”是“
”的充分不必要条件,求
的取值范围.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和个黑球(
为正整数).现从甲、乙两个盒内各任取2个球,若取出的4个球均为黑球的概率为
,求
(1)的值;
(2)取出的4个球中黑球个数大于红球个数的概率.
已知为单调递增的等比数列,且
,
,
是首项为2,公差为
的等差数列,其前
项和为
.
(1)求数列的通项公式;
(2)当且仅当,
,
成立,求
的取值范围.
在中,角
所对的边分别为
,且
.
(1)求的大小;
(2)若是锐角三角形,且
,求
周长
的取值范围.