已知,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(1)求动点的轨迹曲线
的方程;
(2)设动直线与曲线
相切于点
,且与直线
相交于点
,试探究:在坐标平面内是否存在一个定点
,使得以
为直径的圆恒过此定点
?若存在,求出定点
的坐标;若不存在,说明理由.
(本小题满分12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率依次为,且各轮问题能否正确回答互不影响.
(Ⅰ)求该选手进入第四轮才被淘汰的概率;
(Ⅱ)求该选手至多进入第三轮考核的概率.
(本小题满分13分)已知函数.
(Ⅰ)当时,函数
恰有3个零点,求实数
的取值范围;
(Ⅱ)若对任意,有
恒成立,求
的取值范围.
(本小题满分12分)已知一个袋子中有3个白球和3个红球,这些球除颜色外完全相同.
(Ⅰ)每次从袋中取出一个球,取出后不放回,直到取到一个红球为止,求取球次数的分布列和数学期望
;
(Ⅱ)每次从袋中取出一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数的数学期望
.
(本小题满分10分)已知函数在
处取得极值.
(Ⅰ)求实数的值;
(Ⅱ)过点作曲线
的切线,求此切线方程.
(本小题满分10分)
(Ⅰ)证明:.
(Ⅱ)已知圆的方程是,则经过圆上一点
的切线方程为
,类比上述性质,试写出椭圆
类似的性质.