根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k
(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
有一只弧光灯,正常工作电流为 5 A,电阻为 8 Ω,要把它接入电压为 110 V 的电路中,需要串联一个多大的电阻,弧光灯才能正常工作?
把一检验电荷q放在点电荷Q所形成的电场中的A点,若检验电荷的电量为q=-2.0×10-8C,它所受的电场力F=2.0×10—3N,方向背向Q,如图所示,
求:(1)A点的场强大小。
(2)若将检验电荷q从电场中的A点移到B点,电场力做功为4.0×10-6 J,则A、B之间的电势差是多少?
如图所示,在倾角θ=30º的斜面上放置一段凹槽B,B与斜面间的动摩擦因数μ=
,槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离
d=0.10m。A、B的质量都为m=2.0kg,B与斜面间的最大静摩擦力可认为等于滑动摩擦力,不计A、B之间的摩擦,斜面足够长。现同时由静止释放A、B,经过一段时间,A与B的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短。取g=10m/s2。求:
(1)画出凹槽B运动的速度v随时间t的变化图象;
(2)物块A与凹槽B的左侧壁第n次碰撞后瞬间A、B的速度大小;
(3)从初始位置到物块A与凹槽B的左侧壁发生第n次碰撞时B的位移大小。
如图所示,光滑斜面与水平面在B点平滑连接,质量为0.20kg的物体从斜面上的A点由静止开始下滑,经过B点后进入水平面(设经过B点前后速度大小不变),最后停在水平面上的C点。每隔0.20s通过速度传感器测量物体的瞬时速度,下表给出了部分测量数据。取g=10m/s2。
| t/s |
0.0 |
0.2 |
0.4 |
… |
1.2 |
1.4 |
… |
| v/m•s-1 |
0.0 |
1.0 |
2.0 |
… |
1.1 |
0.7 |
… |
求:
(1)斜面与水平面的夹角;30°
(2)物体与斜面间的动摩擦因数;0.2
(3)t=0.8时物体的瞬时速度。1.9m/s
图甲是2012年我国运动员在伦敦奥运会上蹦床比赛中的一个情景。设这位蹦床运动员仅在竖直方向上运动,运动员的脚在接触蹦床过程中,蹦床对运动员的弹力F随时间t的变化规律通过传感器用计算机绘制出来,如图乙所示。取g= 10m/s2,根据F-t图象求:
(1)由图分析可知,运动员的脚对蹦床第一次开始向下用力到第一次离开蹦床上升之前,运动员在蹦床上、下运动的的时间为多少;
(2)运动员第一次离开蹦床上升时,蹦床给运动员的冲量;