已知椭圆E:+y2=1(a>1)的上顶点为M(0,1),两条过M的动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求椭圆E的方程;
(2)若Rt△MAB面积的最大值为,求a;
(3)对于给定的实数a(a>1),动直线AB是否经过一定点?如果经过,求出定点坐标(用a表示);反之,说明理由.
如图,三棱锥P—ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD
平面PAB.
(1)求证:AB平面PCB;
(2)求异面直线AP与BC所成角的大小;
(3)求平面PAC和平面PAB所成锐二面角的余弦值.
为了缓解高考压力,某中学高三年级成立了文娱队,每位队员唱歌、跳舞至少会一项,其中会唱歌的有2人,会跳舞的有5人,现从中选2人.设为选出的人中既会唱歌又会跳舞的人数,且
.
(1)求文娱队的人数;
(2)求的分布列并计算
.
在中,角A,B,C的对边分别为a,b,c,且满足
(1)求角B的大小;
(2)设向量,当k>1时,
的最大值是5,求k的值.
(本小题满分13分)对于给定数列
,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “M类数列”.
(1)若,
(
),数列
、
是否为“M类数列”?若是,指出它对应的实
常数
,若不是,请说明理由;
(2)证明:若数列是“M类数
列”,则数列
也是“M类数列”;
(3)若数列满足
,
,
为常数,求数列
前
项的和,并判断
是否为“M类数列”,说明理由.
(本小题满分13分)设椭圆的上顶点为
,椭圆
上两点
在
轴上的射影分别为左焦点
和右焦点
,直线
的斜率为
,过点
且与
垂直的直线与
轴交于点
,
的外接圆为圆
.
(1)求椭圆的离心率;
(2)直线与圆
相交于
两点,且
,求椭圆方程;
(3)设点在椭圆C内部,若椭圆C上的点到点N的最远距离不大于
,求椭圆C的短轴长的取值范围.