已知、
为椭圆
的左、右焦点,且点
在椭圆
上.
(1)求椭圆的方程;
(2)过的直线
交椭圆
于
两点,则
的内切圆的面积是否存在最大值,若存在其最大值及此时的直线方程;若不存在,请说明理由.
已知数列中,
,
,
.
(1)证明:数列是等比数列,并求数列
的通项公式;
(2)在数列中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;
(3)若且
,
,求证:使得
,
,
成等差数列的点列
在某一直线上.
如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.
(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为
(单位:厘米),已知当
时,
.试将
表示为
的函数.(注:
)
已知函数(
)
(1)求函数的最大值,并指出取到最大值时对应的
的值;
(2)若,且
,计算
的值.
已知点,点
在曲线
:
上.
(1)若点在第一象限内,且
,求点
的坐标;
(2)求的最小值.
已知函数,
.
(Ⅰ)若曲线在
与
处的切线相互平行,求
的值及切线斜率;
(Ⅱ)若函数在区间
上单调递减,求
的取值范围;
(Ⅲ)设函数的图像C1与函数
的图像C2交于P、Q两点,过线段PQ的中点作x轴的垂线分别交C1、C2于点M、N,证明:C1在点M处的切线与C2在点N处的切线不可能平行.