游客
题文

根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。

科目 物理   题型 计算题   难度 中等
知识点: 牛顿第三定律
登录免费查看答案和解析
相关试题

图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面向里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ.不计重力.求

(1)离子速度的大小;
(2)离子的质量.

如图所示,半径为r的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B.半圆的左边分别有两平行金属网M和金属板 N,M、 N两板所接电压为U,板间距离为d.现有一群质量为m、电荷量为q的带电粒子(不计重力)由静止开始从金属板 N上各处开始加速,最后均穿过磁场右边线PQ.求这些粒子到达磁场右边线PQ的最长时间和最短时间差.

电子自静止开始经M、 N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求:
(1)正确画出电子由静止开始直至离开匀强磁场时的轨迹图;(用尺和圆规规范作图)
(2)匀强磁场的磁感应强度B.(已知电子的质量为m,电荷量为e)

如图所示,表面光滑的平行金属导轨P、Q水平放置,左端与一电动势为E,内阻为r的电源连接.导轨间距为d,电阻不计.导轨上放有两根质量均为m的细棒,棒Ⅰ电阻为R,棒Ⅱ为绝缘体,两棒之间用一轻杆相连.导轨所在的空间有垂直导轨平面竖直向上的匀强磁场,磁感应强度大小为B.求:
(1)闭合开关S瞬间棒Ⅱ的加速度;
(2)从闭合开关S到两棒速度达到v的过程中,通过棒Ⅰ的电荷量和电源消耗的总能量分别为多少?(导轨足够长)

如图所示,通电导体棒ab质量为m、长为L,水平放置在倾角为θ的光滑斜面上,通以图示方向的电流,电流强度为I,要求导体棒ab静止在斜面上.求:

(1)若磁场方向竖直向上,则磁感应强度B为多大?
(2)若要求磁感应强度最小,则磁感应强度如何?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号