游客
题文

如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

(1)求证:四边形ABCD是正方形;
(2)连接BD分别交AE、AF于点M、N,将△ABM绕点A逆时针旋转,使AB与AD重合,得到△ADH,试判断线段MN、ND、DH之间的数量关系,并说明理由.
(3)若EG=4,GF=6,BM=3,求AG、MN的长.

科目 数学   题型 解答题   难度 困难
知识点: 圆内接四边形的性质 对称式和轮换对称式 一元二次方程的最值
登录免费查看答案和解析
相关试题

(本小题满分12分)
为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.
(1)问符合题意的组建方案有几种?请你帮学校设计出来;
(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?

(本小题满分12分)
图中的曲线是函数(m为常数)图象的一支.

求常数m的取值范围;
若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),
求点A的坐标及反比例函数的解析式.

(本小题满分12分)
如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离
(结果精确到0.1米,供选用的数据:≈1.414,≈1.732).

(本小题满分10分)
甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和7.从这3个口袋中各随机地取出1个小球.
(1)取出的3个小球上恰好有两个偶数的概率是多少?
(2)取出的3个小球上全是奇数的概率是多少?

(本小题满分10分)
如图,已知点E在直角△ABC的斜边AB上,以AE为直径的⊙O与直角边BC相切于点D,∠B = 30°.

求证:(1)AD平分∠BAC(2)若BD = ,求B E的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号