已知椭圆的离心率
,长轴的左右端点分别为
,
.
(1)求椭圆的方程;
(2)设动直线与曲线
有且只有一个公共点
,且与直线
相交于点
.
求证:以为直径的圆过定点
.
某年某省有万多文科考生参加高考,除去成绩为
分(含
分)以上的
人与成绩为
分(不含
分)以下的
人,还有约
万文科考生的成绩集中在
内,其成绩的频率分布如下表所示:
分数段 |
![]() |
![]() |
![]() |
![]() |
频率 |
0.108 |
0.133 |
0.161 |
0.183 |
分数段 |
![]() |
![]() |
![]() |
![]() |
频率 |
0.193 |
0.154 |
0.061 |
0.007 |
(1)请估计该次高考成绩在内文科考生的平均分(精确到
);
(2)考生A填报志愿后,得知另外有4名同分数考生也填报了该志愿.若该志愿计划录取2人,并在同分数考生中随机录取,求考生A被该志愿录取的概率.
(参考数据:610×0.061+570×0.154+530×0.193+490×0.183+450×0.161+410×0.133=443.93)
在中,角
的对边分别为
,且满足
(1)求证:;
(2)若的面积
,
,
的值.
已知函数.
(1)求函数在区间
上的最大值和最小值;
(2)若,其中
求
的值.
已知函数(
是自然对数的底数).
(1)若曲线在
处的切线也是抛物线
的切线,求
的值;
(2)当时,是否存在
,使曲线
在点
处的切线斜率与
在
上的最小值相等?若存在,求符合条件的
的个数;若不存在,请说明理由.
如图,在平面直角坐标系中,已知
,
,
,直线
与线段
、
分别交于点
、
.
(1)当时,求以
为焦点,且过
中点的椭圆的标准方程;
(2)过点作直线
交
于点
,记
的外接圆为圆
.
①求证:圆心在定直线
上;
②圆是否恒过异于点
的一个定点?若过,求出该点的坐标;若不过,请说明理由.